Personalized lane change decision algorithm using deep reinforcement learning approach

نویسندگان

چکیده

To develop driving automation technologies for humans, a human-centered methodology should be adopted safety and satisfactory user experience. Automated lane change decision in dense highway traffic is challenging, especially when considering different driver preferences. This paper proposes personalized algorithm based on deep reinforcement learning. Firstly, experiments are carried out moving-base simulator. Based the analysis of experiment data, three personalization indicators selected to describe preferences lane-change decisions. Then, learning (RL) approach applied design human-like agents automated decisions capture preferences, with refined rewards using indicators. Finally, trained RL benchmark tested two-lane scenario. Results show that proposed can achieve higher consistency than comparison algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning

This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of...

متن کامل

Tactical Decision Making for Lane Changing with Deep Reinforcement Learning

In this paper we consider the problem of autonomous lane changing for self driving cars in a multi-lane, multi-agent setting. We present a framework that demonstrates a more structured and data efficient alternative to end-to-end complete policy learning on problems where the high-level policy is hard to formulate using traditional optimization or rule based methods but well designed low-level ...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

End-to-End Deep Reinforcement Learning for Lane Keeping Assist

Reinforcement learning is considered to be a strong AI paradigm which can be used to teach machines through interaction with the environment and learning from their mistakes, but it has not yet been successfully used for automotive applications. There has recently been a revival of interest in the topic, however, driven by the ability of deep learning algorithms to learn good representations of...

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Intelligence

سال: 2022

ISSN: ['0924-669X', '1573-7497']

DOI: https://doi.org/10.1007/s10489-022-04172-1